2,641 research outputs found

    Probing the electroweak symmetry breaking history with Gravitational waves

    Full text link
    We perform a three dimensional lattice simulation of the electroweak symmetry breaking process through a two-step phase transition, where one of the two steps is a first order phase transition. Our results show that: 1) when the electroweak symmetry breaking is driven by the beyond Standard Model sector around O(1023)\sim \mathcal{O}(10^{2-3}) GeV, the gravitational wave spectra produced from the phase transitions are of broken power-law double-peak shapes; 2) when the electroweak symmetry breaking is induced by a first-order phase transition of a high-scale global U(1) theory, cosmic strings can form and then disappear through particle radiation, and the yielded gravitational wave spectra are of plateau shapes. The two scenarios can be distinguished through probing gravitational wave spectra. Our study suggests that the stochastic gravitational waves provide an alternative way to probe the beyond Standard Model sector relevant to the electroweak symmetry breaking pattern in the early Universe.Comment: 9 pages, 8 figures, comments welcome

    Uncovering User Interest from Biased and Noised Watch Time in Video Recommendation

    Full text link
    In the video recommendation, watch time is commonly adopted as an indicator of user interest. However, watch time is not only influenced by the matching of users' interests but also by other factors, such as duration bias and noisy watching. Duration bias refers to the tendency for users to spend more time on videos with longer durations, regardless of their actual interest level. Noisy watching, on the other hand, describes users taking time to determine whether they like a video or not, which can result in users spending time watching videos they do not like. Consequently, the existence of duration bias and noisy watching make watch time an inadequate label for indicating user interest. Furthermore, current methods primarily address duration bias and ignore the impact of noisy watching, which may limit their effectiveness in uncovering user interest from watch time. In this study, we first analyze the generation mechanism of users' watch time from a unified causal viewpoint. Specifically, we considered the watch time as a mixture of the user's actual interest level, the duration-biased watch time, and the noisy watch time. To mitigate both the duration bias and noisy watching, we propose Debiased and Denoised watch time Correction (D2^2Co), which can be divided into two steps: First, we employ a duration-wise Gaussian Mixture Model plus frequency-weighted moving average for estimating the bias and noise terms; then we utilize a sensitivity-controlled correction function to separate the user interest from the watch time, which is robust to the estimation error of bias and noise terms. The experiments on two public video recommendation datasets and online A/B testing indicate the effectiveness of the proposed method.Comment: Accepted by Recsys'2

    Influence of Generalized and Extended Uncertainty Principle on Thermodynamics of FRW universe

    Full text link
    The influence of the generalized uncertainty principle (GUP) and extended uncertainty principle (EUP) on the thermodynamics of the Friedmann-Robertson-Walker (FRW) universe has been investigated. It is shown that the entropy of the apparent horizon of the FRW universe gets a correction if one considers the effect of the GUP or EUP. Moreover, starting with the modified entropy and applying the first law of thermodynamics, dE=TdSdE=TdS, to the apparent horizon of the FRW universe, we obtain the modified Friedmann equations. The influence of the GUP or EUP on the thermodynamics of the FRW universe provides a deep insight into the understanding of the quantum gravity or large length scale corrections to the dynamics of the FRW universe.Comment: 7 papges, no figure, comments are welcome! v2:Typos corrected, some references added; v3:typoes corrected, more references added, final version to appear in Phys. Lett.

    More on QCD Ghost Dark Energy

    Full text link
    The difference between vacuum energy of quantum fields in Minkowski space and in Friedmann-Robterson-Walker universe might be related to the observed dark energy. The vacuum energy of the Veneziano ghost field introduced to solve the U(1)AU(1)_A problem in QCD is of the form, H+O(H2) H+ {\cal O}(H^2). Based on this, we study the dynamical evolution of a phenomenological dark energy model whose energy density is of the form αH+βH2\alpha H+\beta H^2. In this model, the universe approaches to a de Sitter phase at late times. We fit the model with current observational data including SnIa, BAO, CMB, BBN, Hubble parameter and growth rate of matter perturbation. It shows that the universe begins to accelerate at redshift z0.75z\sim 0.75 and this model is consistent with current data. In particular, this model fits the data of growth factor well as the ΛCDM\Lambda CDM model.Comment: 14 pages, 4 figures, 2 table

    Self-supervised Likelihood Estimation with Energy Guidance for Anomaly Segmentation in Urban Scenes

    Full text link
    Robust autonomous driving requires agents to accurately identify unexpected areas in urban scenes. To this end, some critical issues remain open: how to design advisable metric to measure anomalies, and how to properly generate training samples of anomaly data? Previous effort usually resorts to uncertainty estimation and sample synthesis from classification tasks, which ignore the context information and sometimes requires auxiliary datasets with fine-grained annotations. On the contrary, in this paper, we exploit the strong context-dependent nature of segmentation task and design an energy-guided self-supervised frameworks for anomaly segmentation, which optimizes an anomaly head by maximizing the likelihood of self-generated anomaly pixels. To this end, we design two estimators for anomaly likelihood estimation, one is a simple task-agnostic binary estimator and the other depicts anomaly likelihood as residual of task-oriented energy model. Based on proposed estimators, we further incorporate our framework with likelihood-guided mask refinement process to extract informative anomaly pixels for model training. We conduct extensive experiments on challenging Fishyscapes and Road Anomaly benchmarks, demonstrating that without any auxiliary data or synthetic models, our method can still achieves competitive performance to other SOTA schemes

    A Mode-Sum Prescription for Vacuum Polarization in Even Dimensions

    Full text link
    We present a mode-sum regularization prescription for computing the vacuum polarization of a scalar field in static spherically-symmetric black hole spacetimes in even dimensions. This is the first general and systematic approach to regularized vacuum polarization in higher even dimensions, building upon a previous scheme we developed for odd dimensions. Things are more complicated here since the even-dimensional propagator possesses logarithmic singularities which must be regularized. However, in spite of this complication, the regularization parameters can be computed in closed form in arbitrary even dimensions and for arbitrary metric function f(r)f(r). As an explicit example of our method, we show plots for vacuum polarization of a massless scalar field in the Schwarzschild-Tangherlini spacetime for even d=4,...,10d=4,...,10. However, the method presented applies straightforwardly to massive fields or to nonvacuum spacetimes.Comment: arXiv admin note: text overlap with arXiv:1609.0816

    Learning with Noisy labels via Self-supervised Adversarial Noisy Masking

    Full text link
    Collecting large-scale datasets is crucial for training deep models, annotating the data, however, inevitably yields noisy labels, which poses challenges to deep learning algorithms. Previous efforts tend to mitigate this problem via identifying and removing noisy samples or correcting their labels according to the statistical properties (e.g., loss values) among training samples. In this paper, we aim to tackle this problem from a new perspective, delving into the deep feature maps, we empirically find that models trained with clean and mislabeled samples manifest distinguishable activation feature distributions. From this observation, a novel robust training approach termed adversarial noisy masking is proposed. The idea is to regularize deep features with a label quality guided masking scheme, which adaptively modulates the input data and label simultaneously, preventing the model to overfit noisy samples. Further, an auxiliary task is designed to reconstruct input data, it naturally provides noise-free self-supervised signals to reinforce the generalization ability of deep models. The proposed method is simple and flexible, it is tested on both synthetic and real-world noisy datasets, where significant improvements are achieved over previous state-of-the-art methods

    A one-dimensional triaqua­europium(III)–1H,3H-benzimidazol-3-ium-5,6-dicarboxyl­ate–sulfate polymeric structure

    Get PDF
    In the title coordination polymer, catena-poly[[[triaqua­europium(III)]-bis­(μ-1H,3H-benzimidazol-3-ium-5,6-dicarb­oxyl­ato-κ3 O 5,O 5′:O 6)-[triaqua­europium(III)]-di-μ-sulfato-κ3 O:O,O′;κ3 O,O′:O′] hexahydrate], [Eu2(C9H5N2O4)2(SO4)2(H2O)6]·6H2O}n, the 1H,3H-benzimidazol-3-ium-5,6-dicarb­oxy­l­ate ligand is protonated at the imidazole group (H2bdc). The EuIII ion is coordinated by nine O atoms from two H2bdc ligands, two sulfate anions and three water mol­ecules, displaying a bicapped trigonal prismatic geometry. The carboxyl­ate groups of the H2bdc ligands and the sulfate anions link the EuIII ions, forming a chain along [010]. These chains are further connected by N—H⋯O and O—H⋯O hydrogen bonds and π–π inter­actions between the imidazole and benzene rings [centroid–centroid distances = 3.997 (4), 3.829 (4) and 3.573 (4) Å] into a three-dimensional supra­molecular network
    corecore